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Abstract. Distributed wind projects, which are connected at the distribution level of an electricity system or in off-grid
applications to serve specific or local energy needs, often rely solely on wind resource models to establish wind speed and
energy generation expectations. Historically, anemometer loan programs have provided an affordable avenue for more
accurate onsite wind resource assessment, and the lowering cost of lidar systems have shown similar advantages for more
recent assessments. While a full twelve months of onsite wind measurement is the standard for correcting model-based long-
term wind speed estimates for utility-scale wind farms, the time and capital investment involved in gathering onsite
measurements must be reconciled with the energy needs and funding opportunities that drive expedient deployment of
distributed wind projects. Much literature exists to quantify the performance of correcting long-term wind speed estimates
with one or more years of observational data, but few studies explore the impacts of correcting with months-long
observational periods. This study aims to answer the question of how low can you go in terms of the observational time
period needed to make impactful improvements to model-based long-term wind speed estimates.

Three algorithms, multivariable linear regression, adaptive regression splines, and regression trees, are evaluated for their
skill at correcting long-term wind resource estimates from the European Centre for Medium-Range Weather Forecasts
Reanalysis version 5 (ERA5) using months-long periods of observational data from 66 locations across the United States. On
average, correction with even one month of observations provides significant improvement over the baseline ERA5 wind
speed estimates and produces median bias magnitudes within 0.21 m s of the median bias magnitudes achieved using the
standard twelve months of data for correction. However, in cases when the shortest observational periods (one to two
months) used for correction are misrepresentative of the longer-term trends in the wind resource, the resultant long-term
wind speed errors are worse than those produced using ERA5 without correction. Summer months, which are characterized
by weaker relative wind speeds and standard deviations for most of the evaluation sites, tend to produce the worst results for
long-term correction using months-long observations. The three tested algorithms perform similarly for long-term wind
speed bias; however, regression trees perform notably worse than multivariable linear regression and adaptive regression

splines in terms of mean absolute error and correlation when using six months or less of observational data for correction.
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1 Introduction

In the utility-scale wind energy industry, short-term (less than five years) wind measurements are widely used for correcting
the long-term (decades-long) wind resource at a site of wind development interest in an expedient manner. Wind farm
project planners install onsite wind measurement instruments (e.g., meteorological towers, lidars, sodars) to gather data, but
cannot wait decades to establish long-term wind resource characterization based on such measurements alone (Lackner et al.,
2008). Instead, wind analysts commonly simulate the long-term wind resource by correlating the short-term onsite wind
measurements with long-term reference data, such as atmospheric reanalyses, high-resolution mesoscale models, or other
nearby measurements using a measure-correlate-predict (MCP) approach.

Distributed wind projects, particularly those involving small wind turbines, are more subject to challenging financial,
spatial, and time constraints than utility-scale wind. Onsite wind measurements are often not feasible or economically viable
investments, leading to many distributed wind projects that relied solely on wind resource models to establish generation
estimates, which are helpful but not entirely accurate. Between 2000 and 2011, the U.S. Department of Energy (DOE)’s
Wind Powering America initiative sponsored an Anemometer Loan Program to provide a more affordable avenue for onsite
wind resource assessment, which resulted in the installation of 128 anemometers across the U.S. and a template for around
20 state administered anemometer loan programs (Jimenez, 2013). More recently, researchers from Aurora College have
begun deploying mobile lidar systems in northern Canada to study the viability of wind energy in communities that are
reliant on diesel, which is expensive and difficult to transport to remote locations (Seto, 2022). In the U.S., communities that
receive DOE technical assistance to transform their energy systems, such as through the Energy Transitions Initiative
Partnership Project (DOE, 2023), continue to weigh the costs and benefits of onsite wind measurement. In addition to
concerns regarding capital investment, communities must often reconcile the time investment involved for gathering onsite
measurements with the energy needs and funding opportunities driving expedient deployment of wind turbines.

The vast majority of wind resource assessment literature supports collecting at least one year of onsite measurements to
represent a full seasonal wind cycle, including the analyses of Dinler (2013), Mifsud et al. (2018), Zakaria et al. (2018), Tang
et al. (2019), and Chen et al. (2022). Miguel et al. (2019) found that uncertainty in long-term wind resource estimates
reduced by 18%, 29%, 35%, and 40% when one, two, three, and four years of wind measurements, respectively, were added
to the monitoring campaign. Additionally, private companies that specialize in providing resource assessment for wind
projects also tend to require at least one year of onsite measurements to characterize the wind. For example, ArcVera
performs high-resolution modelling (200 m) using WRF with boundary conditions from reanalyses including ERAS5. They
bias correct their model results using at least one meteorological tower with at least one full year of observational data to
achieve mean absolute deviations within 0.2 m s, including within areas of complex terrain (ArcVera, 2023). In their
discussion of wind resource assessment, wind measurement company NRG Systems (2023) states that measurements of
meteorological parameters are typically taken over the course of several years at a potential wind farm site using a

combination of meteorological towers and lidars.
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A small number of studies, however, explore adjusting long-term predictions using observational data with less than one
year of temporal coverage. Taylor et al. (2004 as reported via Carta et al., 2013), Weekes and Tomlin (2014), and Basse et
al. (2021) reported that wind speed errors were within 4%, 4.8%, and 4%, respectively, using three months of onsite
measurements. The performance of long-term predictions using less than one year of on-site measurements varied according
to the season(s) during which the onsite measurements were taken. For their experiment in the United Kingdom, Weekes and
Tomlin (2014) found that the smallest errors occurred when using measurements taken in early spring or fall. Basse et al.
(2021) performed MCP tests in Germany using linear regression and variance ratio algorithms and found that using variance
ratio produced overestimates when using summer measurements and underestimations when using winter measurements,
with the opposite trend noted for linear regression.

The present study expands previous analyses of long-term wind resource performance based on months-long observations
to diverse locations across the United States, with a focus on measurement heights relevant to distributed wind installations
(20 m — 100 m). We explore multiple MCP algorithm options and highlight the best performers for generating accurate long-
term wind speed estimates for a variety of error metrics relevant to the wind energy industry. Section 2 describes the wind
measurements employed as 1) the months-long training input for MCP-based long-term wind estimates and 2) the long-term
datasets to validate the MCP results. The reference dataset, ERAS, is also discussed in Section 2, along with three MCP
algorithms selected for evaluation and the error metrics employed to test their performance. Section 3 provides the
performance analysis of MCP-based long-term wind resource estimation with less than one year of onsite measurements
with a focus on establishing the minimum number of months needed for certain levels of accuracy. Additionally, Section 3
relates the performance results to a variety of influences, including geographical location, the time of year that measurements
were gathered, and interannual variability in the wind resource. Section 4 summarizes the performance analysis and relates

the wind speed error metrics to impacts on wind energy generation expectations.

2 Data discussion and methodology

The MCP model for long-term wind resource assessment begins with establishing a short-term relationship between
observational wind data measured at a target site and concurrent data at a nearby reference site. The reference data can be
observations or model data and typically includes wind variables (speed and direction) and potentially additional relevant
meteorological (temperature, pressure) or temporal (hour of day, month of year) variables. The resultant short-term
relationship is subsequently applied to long-term data from the reference site to predict the long-term wind resource at the

target site (Rogers et al., 2005).

2.1 Wind observations

The 66 wind speed observational datasets in this analysis are sourced from U.S. Department of Energy national laboratories,

facilities, and projects, the National Data Buoy Center, the Bonneville Power Administration, and the Forest Ecosystem

3
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Monitoring Cooperative. One observational dataset was collected using a lidar and the remaining measurements were
gathered from anemometers on meteorological towers. Most of the observational collection is publicly available (57 sites),

while a small number of datasets are subject to non-disclosure agreements (9 sites) as outlined in the data availability

statement.
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Figure 1. Locations of wind measurements assessed for establishing long-term performance based on months-long observations used in
this study.

The measurement sites utilised in this work span 28 states and are diverse in terrain complexity and land cover (Figure 1).
The measurement heights are similarly diverse, from 20 m to 100 m (Figure 2a), representing a wide range of the distributed
wind hub heights that are reported in the United States (PNNL, 2024). Many of the lowest observations, between 20 m and
30 m, source from the National Data Buoy Center and are located along coastlines. The highest observations are in Long
Island, New York (85 m) and the San Francisco Bay Area, California (100 m).

To establish reliable datasets for MCP training and validation, the wind speed observations were quality-controlled by
removing instances or periods of atypical or unphysical reported wind speeds (less than 0 m s?, greater than 50 m s, or

4
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nonvarying periods of time greater than four hours) that might indicate instrument error due to an outage or weather impacts
such as icing. The temporal coverage of the wind speed observations at the measurement sites ranged from 3.5 — 23 years,

with an average of 11 years (Figure 2b).
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Figure 2. (a) Measurement heights and (b) long-term measurement availability for the sites evaluated for long-term performance based on
months-long observations.

2.2 Reanalysis model for long-term correction

ERADS is a popular global reanalysis model (Hersbach et al., 2020) utilised for wind energy resource assessments in a variety
of ways, including as a standalone product, as input boundary conditions to higher-resolution model runs, and as a reference
dataset for MCP with local observations (Olauson, 2018; Soares et al., 2020; Hayes et al., 2021; de Assis Tavares et al.,
2022). ERAS is developed by the European Centre for Medium-Range Weather Forecasts and provides meteorological data
from 1950-present at 1-hour temporal resolution with a horizontal grid spacing of 0.25° (Hersbach et al., 2020). At many
locations where validation has been performed, ERAS tends to produce high Pearson correlation coefficients (Eq. 1) and
negative biases (indicating underestimation) (Eq. 2) between the simulated (usim) and observed (Uos) Wind speeds. Ramon et
al. (2019) utilised 77 meteorological towers around the globe with measurement heights ranging from 10 m to 122 m and
found median ERAS5 seasonal wind speed biases between 0 and -1 m s, though ERAS5 had the best correlation with
observations among five reanalyses. Across 62 sites in the continental US, Sheridan et al. (2022) found that ERA5
underestimated the observed wind speeds by an average of 0.5 m s but had higher correlations (average of 0.77) than two
alternate reanalyses and wind models. At locations across Europe, Murcia et al. (2022) determined that ERA5 slightly

underestimated the observed wind speeds (average bias = -0.06 m s*) and provided a high degree of correlation (average of

5
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0.92). This study aims to reduce the ERA5-based wind speed bias using months-long onsite observations while not
degrading other metrics of error, including correlation and mean absolute error (MAE).

The Pearson correlation coefficient explains the degree to which the simulated and observed wind speeds are linearly
related, with values close to one indicating a high degree of correlation (Eg. 1). The wind speed bias, i.e., the average
difference between the simulated (usim) and observed (uoss) Wind speeds over a time series of length N, informs on whether a
simulation tends to overestimate (positive bias), underestimate (negative bias), or accurately represent (zero bias) the
observed wind resource (Eq. 2). This work also considers the bias magnitude (the absolute value of bias (Eq. 2)) when
comparing multiple sites, as combinations of positive and negative biases can obscure the degree of error. The MAE is the
absolute difference between the simulated and observed wind speeds on a timestamp-by-timestamp basis, providing insight

on the magnitude of error in a simulation (Eq. 3).
Z?Izl(usim,i — ustm)(uobs,i - uobs) (l)

\/Z?Izl(usim,i - ustm)z JZﬁl(uobs,i - M)Z

correlation =

| L )
bias = Nzl(usim,i - uobs,i)
i=

L 3)
MAE = NZ'usim,i - uobs,i'

=1

To set a baseline of ERA5 performance for the suite of observations utilised in this work, we adjust the ERA5 wind
speeds to each measurement height z (Figure 2a) using the power law (Eq. 4) with the shear exponent a calculated at each
timestamp using the ERA5 wind speeds at 10 m and 100 m (Eqg. 5). Horizontally, we adjust the ERA5 wind speeds to the
observational location using inverse distance-weighted interpolation.

Z \% 4

Ueras_z = Ueras_10o0m (m) 4)

a= 1n(ueras,lOOm/ueras,lOm) (5)
In(100 m/10 m)

In all regions except for the Southeast, the ERA5 wind speeds tend to be lower than the observed wind speeds (Figure
3a). The underestimation is most pronounced in Alaska (median bias = -1.61 m s*), the Pacific Northwest (-1.18 m s), and
the Southern Plains (-1.74 m s%). The same three regions have the highest MAEs (median MAEs = 2.39 m s%, 1.86 m s,

and 2.09 m s, respectively) (Figure 3b). The median correlations exceed 0.75 for all regions except Alaska (0.69) and the
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West (0.67), where the coarse ERA5 is challenged by mountainous and coastal terrain (Figure 3c). Across all sites, the

median statistics are: bias = -0.50 m s, bias magnitude = 0.67 m s, MAE = 1.66 m s*, and correlation = 0.78.
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Figure 3. Long-term ERA5 wind speed (a) bias (b) MAE, and (c) correlation across 66 measurement sites in the United States, grouped by
region. AK = Alaska, PNW = Pacific Northwest, W = West, MW = Midwest, SP = Southern Plains, NE = Northeast, and SE = Southeast.

2.3 MCP methodologies

One of the advantages of utilising MCP for long-term wind resource estimation is the variety of algorithm choices, which
range from simplistic linear regression to machine learning techniques that can be applied to link the short-term and long-
term wind speeds. This analysis evaluates three algorithms for their skill at creating long-term wind resource estimates based
on varying temporal lengths of observational data: (1) multiple linear regression (MLR), (2) adaptive regression splines
(ARS), and (3) regression trees (RT). These algorithms were selected because they are broadly available and represent
diversity in complexity and approach. Multiple linear regression estimates the linear relationship between a target variable
(onsite wind measurements in this analysis) and more than one reference variable (sourced from ERAS in this analysis).
Adaptive regression splines involve the construction of piecewise-cubic regression models based on the short-term target and
reference datasets (Jekabsons, 2016). Regression trees recursively partition and evaluate the concurrent short-term target and
reference datasets into unique segments, which are subsequently used to predict long-term target behaviour.

To narrow down an effective training approach, different combinations of reference variables are explored for their
impact on long-term wind resource assessment error metrics. The analysis of Phillips et al. (2022) identified reanalysis wind
speed, reanalysis wind direction, and time of day as the most important variables for wind speed bias correction using a
variety of techniques including multivariable linear regressions and regression trees. Therefore, we explore progressively
increasing variable combinations of ERAS5 wind speeds at the provided output heights of 10 m and 100 m (Ueras_1om and
Ueras_100m), Power law-based wind speed estimates at the measurement height z (Ueras 2) (EQ. 4) using the shear exponent «
based on the ERA5 wind speeds at 10 m and 100 m (Eq. 5), ERA5 wind directions at 10 m and 100 m (Jeras_1om and
Jderas_100m), and the hour of the day.

As an initial test of the performance of the algorithms and reference variable combinations, we develop ensembles of

MCP-based long-term wind speed estimates at each measurement site using consecutive 12-month training periods when at

7
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least 75% of the observations each month (i.e., at least three weeks) are available after applying the quality control checks
discussed in Section 2.1. For example, if a site has a 10-year long-term period ranging from January 2008 to December 2017,
an ensemble of MCP-based 10-year wind speed estimates will be established based on training periods of January 2008 —
December 2008, February 2008 — January 2009, ... December 2016 — November 2017, January 2017 — December 2017 as
long as each month in the training period meets the data recovery and quality threshold of 75%. All 66 observations utilised
in this work have average and median monthly data recovery and quality rates exceeding the 75% threshold. The MCP-based
long-term wind speed estimates cover the same temporal period that is available at each site (3.5-23 years) (Figure 2b). For
each of the 66 sites, we compute the ensemble average error metrics (bias magnitude, MAE, and correlation), with the

averages and medians across all the sites presented in Table 1.

Table 1. Long-term MCP-based wind speed error metrics averaged (median) across 66 sites using different combinations of algorithms
and training variables. Values in bold indicate the optimal combination of training variables for each error metric and algorithm.

Error Metric Algorithm Training Variables
Ueras_10m, Uera5_100m Ueras_10m, Ueras_100m Ueras_10m, Ueras_100m Ueras_10m, Ueras_100m
Ueras_z Ueras_z Ueras_z
Oeras_10m, Oera5_100m Oeras_10m, Jera5_100m
hour of day
Bias Magnitude MLR 0.09 (0.08) 0.09 (0.08) 0.09 (0.07) 0.09 (0.07)
(ms?) ARS 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.07)
RT 0.09 (0.08) 0.09 (0.08) 0.08 (0.07) 0.08 (0.06)
MAE MLR 1.51 (1.53) 1.43 (1.43) 1.41(1.43) 1.41 (1.41)
(ms?) ARS 1.50 (1.52) 1.41(1.42) 1.32(1.31) 1.31(1.29)
RT 1.60 (1.61) 1.54 (1.55) 1.42(1.37) 1.40 (1.35)
Correlation MLR 0.75 (0.75) 0.78 (0.80) 0.79 (0.80) 0.79 (0.80)
ARS 0.75 (0.75) 0.78 (0.80) 0.81(0.83) 0.82(0.83)
RT 0.71 (0.72) 0.74 (0.76) 0.78 (0.80) 0.79 (0.81)

All MCP combinations of algorithms and training variables provide substantially improved long-term bias magnitudes
compared to the ERAS5 (i.e., Ueras ;) average (median) bias magnitude of 1.01 m s* (0.67 m s1) (Table 1). With 12 months of
training time, the MCP average and median bias magnitudes vary by at most 0.02 m s according to algorithm and training
variables. More variability is seen according to the various combinations of MCP algorithms and training variables for MAE.
All combinations improve on the ERA5 average (median) MAE of 1.82 m s (1.65 m s%), with the incorporation of all
training variables producing the lowest MAE values (Table 1). Using just Ueras_1om and Ueras_100m &S training variables, all
three MCP algorithms produce worse correlations than the ERA5 average (median) correlation of 0.76 (0.77). Adding the

8
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ERAS5 wind speed adjusted to the measurement height, Ueras », to the training variables produces the largest relative
improvement to the MCP correlations (average and median correlations increase by 0.03 — 0.05) but utilising all training
variables generates the highest overall correlations (Table 1). Given the optimal MAE and correlation results found when
training for 12 months with MCP using the complete variable set of ERA5 wind speeds, ERAS5 wind directions, and hour of
the day, these variables are selected for evaluating long-term MCP wind speed estimates using months-long training periods.
Using 12 months of observations, ARS is the best performing algorithm for all error metrics and the following sections
explore whether that status holds when using months-long training periods.

The months-long analysis follows the same ensemble formula as the 12-month exercise, just with shorter consecutive
training periods. For example, for the site that has a 10-year long-term period ranging from January 2008 to December 2017,
the ensemble based on one month of observations would consist of MCP-based 10-year wind speed estimates using training
periods of January 2008, February 2008, ... November 2017, December 2017, provided each month in the training period
meets the data recovery and quality threshold of 75%. The ensemble based on two months of observations would consist of
MCP-based 10-year wind speed estimates using training periods of January 2008 — February 2008, February 2008 — March
2008, ... October 2017 — November 2017, November 2017 — December 2017 as long as both months in each training period
meet the data recovery and quality threshold of 75%. If every month in the 2008 observations for a site had >75% data
recovery and quality except March, long-term MCP-based wind speed estimates based on January 2008 — February 2008 and
April 2008 — May 2008 would be included in the ensemble, but not February 2008 — March 2008 or March 2008 — April
2008.

3 Results
3.1 Long-term wind estimation performance according to length of training period

On average, even one month of observations combined with any of the three assessed MCP algorithms provides substantial
improvement over using ERAS5 wind speeds alone for long-term wind speed estimation. Figure 4a displays the ensemble
average bias magnitude at each site using increasing numbers of training months. The median bias magnitudes across all
sites using one month of training are 0.28 m s* (MLR), 0.27 m s (ARS), and 0.29 m s (RT), as compared with 0.67 m s*
using ERAS. The median bias magnitudes drop to ranges between 0.17 m s (RT) and 0.19 m s (MLR) using three months
of training and 0.12 m s (RT) and 0.14 m s (MLR) using six months of training. For all training durations of at least two
months, RT is on average the best performing MCP algorithm for reducing bias magnitude.

Considering the sign of the bias, we recall that ERA5 tends to underestimate the observed wind speeds with a median bias
of -0.50 m s across the sites. On average, incorporating months-long observations into the long-term estimations moves the
bias substantially closer to zero. Applying just one month of observations results in median biases between -0.06 m s* (RT)
and -0.01 m s* (ARS). The median biases using any MCP algorithm remain slightly negative with increasing training period
lengths until the ARS biases switch to slightly positive after five months of training data and the MLR and RT bias switch to

9
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slightly positive after seven months of training data. For all training period lengths of four months or greater, the median
MCP-based biases are within +0.01 m s, regardless of algorithm.

The MCP algorithms diverge in their performance for long-term wind speed MAE and correlation, especially when using
four or fewer training months. On average, using one month of training improves the long-term MAE results when applying
MLR (median MAE = 1.51 m s!) or ARS (median MAE = 1.47 m s?) relative to using ERA5 wind speeds (median MAE =
1.66 m s1) (Figure 4b). However, using one month of training with RT produces a median MAE across the sites of 1.85m s’
!, showing worse performance than simply using the ERA5 wind speeds to establish long-term estimates. For MAE, RT
begins improving over ERA5 when the training period length reaches four months. For all training durations, ARS is on
average the best performing MCP algorithm for reducing MAE.

Similar to the MAE results, using RT with a limited number of training months does not improve correlation relative to
ERAS5 and the other MCP algorithms. Using one month of training, MLR provides higher correlations (median = 0.79) than
ERA5 (median = 0.78) and ARS produces similar correlations (median = 0.78), while the RT correlations are quite a bit
worse (median = 0.68) (Figure 4c). Only when the training period is at least seven months do the median RT correlations
surpass ERAS. An interesting correlation comparison is noted for the National Renewable Energy Laboratory’s National
Wind Technology Center, located in an extremely windy corridor of the complex terrain along Colorado’s Front Range. All
of the lowest correlation outliers in Figure 4c are from this site and, while MLR and ARS match or improve upon the ERA5
correlation for the National Wind Technology Center (0.47) using any training period length, RT never achieves the ERA5
correlation even with a full twelve months of training. For all training durations of at least two months, ARS is on average

the best performing MCP algorithm for correlation.

10
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Figure 4. Average long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites comparing observations with ERA5 and MCP
techniques using varying training period lengths.

Given that a twelve-month training period is most commonly employed for long-term wind speed estimation using MCP,
it is beneficial to consider MCP performance using less than one year of observations relative to the twelve-month standard.
Using a one-month training period, the median long-term bias magnitudes for 66 sites are within 0.21 m s of the median
long-term bias magnitudes determined using twelve months regardless of MCP algorithm (Figure 5a). However, at one
coastal Alaskan site the difference in bias magnitude when using one versus twelve months of observations can exceed 1 m
s’ Training with three months of observations places the median bias magnitudes within 0.12 m s of the median bias
magnitudes established when using twelve months, with outlier differences within 0.8 m s. Using six-month training
periods results in median bias magnitudes within 0.07 m s of the twelve-month median bias magnitudes, with outlier
differences within 0.5 m s,
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Great disparity is noted among the MCP algorithms when comparing their MAE and correlation performance using
months-long training periods versus training periods of one-year duration (Figure 5b,c). The median MAESs using one month
of observations are 0.08 m s (MLR), 0.18 m s (ARS), and 0.46 m s** (RT) different from their respective median MAEs
when utilising twelve months of observations. The RT MAESs using less than one year of observations remain noticeably
different from the RT MAEs using twelve months of observations, in contrast to MLR and ARS whose months-long MAEs
converge on the year-long MAEs more rapidly. For example, using a six-month training period, the median MLR and ARS
MAESs are within 0.02 m s of their twelve-month median MAEs, while the six-month median RT MAE is 0.15 m s
different from the median RT twelve-month MAE. For correlation, the differences between the median months-long results
and those using a full twelve months are within 0.01 regardless of training duration when using MLR. Using one month of
training versus twelve months produces median correlation differences of 0.05 for ARS and 0.13 for RT. With six-month
training periods, ARS produces a median correlation less than 0.01 different than using twelve months, while the six-month

median RT correlation is 0.04 different from using twelve months.
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Figure 5. Difference in average long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites between MCP training periods of
one to eleven months and MCP training periods of twelve months.

The results in Figure 4 and Figure 5 explain the degree of error expected on average when using MCP with observations

less than one year in duration, highlighting similar performance across the MCP algorithms for long-term wind speed bias

magnitude, but less successful performance when using RT with months-long observations for MAE and correlation.

However, since wind measurement timelines tend to be more dependent on funding availability, project deadlines, and fair-

weather deployment windows than on identifying the most representative period for long-term wind representation, it is

imperative to consider the worst-case scenario errors (Figure 6). In this scenario, we identify the worst-performing ensemble

member for each error metric (largest bias magnitude, largest MAE, smallest correlation) and each algorithm (MLR, ARS,

RT) according to length of training period for each of the 66 sites.

13



285

290

295

https://doi.org/10.5194/wes-2024-37 WIND
Preprint. Discussion started: 6 May 2024

~
© Author(s) 2024. CC BY 4.0 License. e we \ EE:EEIT\I%YE

In the worst-case scenario, using a single month for MCP training will produce long-term errors significantly worse than
simply using ERA5 to produce long-term wind speed estimates (Figure 6). Despite its performance success on average
(Figure 4), ARS produces the largest bias magnitudes (median = 1.31 m s) and the smallest correlations (median = 0.23) in
the worst-case scenario. MLR performs the best using a one-month training period in the worst-case scenario (median bias
magnitude = 1.06 m s%, median MAE = 1.93 m s, median correlation = 0.63).

A training period of four months provides improvement in bias magnitude over simply using ERA5 (median = 0.67 m s?)
for long-term wind resource estimation, even in the worst-case scenario, regardless of MCP algorithm choice (medians =
0.54 m st —0.58 m s) (Figure 6). MLR and ARS show improvement in MAE over ERA5 (median = 1.66 m s?) at training
durations of four months as well (medians = 1.60 m s, 1.59 m s, respectively), however the RT MAEs do not show
improvement over ERA5 until a training duration of six months (median = 1.65 m s) is established in the worst-case
scenario. For correlation, MLR exceeds ERA5 (median = 0.78) at five months, ARS at six months, and RT at eleven months
(medians = 0.79). Though RT provides the most beneficial bias magnitudes and ARS the most beneficial MAEs and
correlations on average when using MCP with months-long observations (Figure 4), MLR is the least risky approach given
the possibility of measurement during unfavourable wind conditions for MCP.

14



300

305

https://doi.org/10.5194/wes-2024-37
Preprint. Discussion started: 6 May 2024
(© Author(s) 2024. CC BY 4.0 License.

O

WIND
ENERGY
SCIENCE

eawe)

european academy of wind energy

(@) 6.0
- COERA5 [IMLR [JARS [RT
® 5.0 * . -
é + -~ ~ERA5 Median = 0.67 m s
o 4.0
S0 T 4T Fox
%2.0 ? T E T + + +
. i R
= FllOTEE 4 t+ ¢
810 QEE o TTTOFEE FEr ogug 4.,
s | BT 588 Des oo oid el T3S0 Seroresosaros
. ERAS 1 2 3 4 5 6 7 8 9 10 11 12
Number of Training Months
(b) 6.0 *
+ ERA5 COMLR [JARS ORT
IR T -~ ERAS5 Median = 1.66 m s
- 7o+
‘o 4.0 v T e
E : 1 1 - 1 + -
= 3.0 N A | *
H Vo T # | T i t + T #
Eéz_o . QHH EEE HEIH :TE :Té :Té :'T? 5‘%? AN RS S A
o B bR uetgel gel ge8 008 et e pub oev Gie
. 1L 1L i*l HE il‘ N ILl-‘l llll 11 111 LJ_-# 1l+
0.0
ERAS 1 2 3 4 5 6 7 8 9 10 11 12
Number of Training Months
@ 10— : —
R I PR T IR L LRSI AR L St
g 06 L . “EI 10 41 42D FL +pt o+t +1 +j+ +3
S + EI 0 Ea i * * + +
7 04 i $ ST T $i + + + + +
2 02 I T
8 00 " S
0.2 | + [IERA5 CIMLR [CJARS [IRT
04 | + ERAS Median = 0.78
ERAS 1 2 3 4 5 6 7 8 9 10 11 12

Number of Training Months

Figure 6. Worst case long-term (a) bias magnitude, (b) MAE, and (c) correlation for 66 sites comparing observations with ERA5 and
MCP techniques using varying training period lengths. Outliers not displayed: (a) 9.64 m s bias magnitude for one training month with
ARS, (b) 10.46 m s** MAE for one training month with ARS.

To help us understand what those unfavourable conditions are that might lead to a worst-case scenario, we investigate the
characteristics of the wind speed observations during the worst-case scenario periods relative to the average characteristics of
the wind speed observations across all training periods with the same duration (Figure 7). It is interesting to note that the
dates of the training time periods with the worst-case scenarios are variable according to MCP algorithm and error metric,
particularly for the shortest duration training periods. We find that both the mean and standard deviation of the observed
wind speeds during the worst-case scenario month or consecutive months tend to be lower than the mean and standard
deviation of the observed wind speeds across all periods with the same durations, particularly when using ARS and RT
(Figure 7). In other words, low wind speed time periods with correspondingly low variations in the wind speeds tend to

provide the biggest challenges for long-term MCP accuracy. For example, the median observed wind speed mean (standard
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deviation) across the 66 sites for all one-month duration periods is 5.80 m s (3.12 m s), while the one-month worst-case
scenario for ARS based on bias magnitude corresponds to an observed wind speed mean (standard deviation) of 4.42 m s
(2.25 m s1) (Figure 7a,b). Increasing numbers of training months correspond with higher mean wind speeds and standard
deviations during the worst-case periods, along with convergence of the worst-case scenario mean wind speeds and standard

deviations to mean wind speeds and standard deviations across all training periods of the same durations.
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Figure 7. (a), (c), (€) Mean wind speed and (b), (d), (f) wind speed standard deviation across 66 sites for MLR, ARS, and RT worst-case
scenarios for (a), (b) bias magnitude, (c), (d) MAE, and (e), (f) correlation, and across all training periods for each site of the same
durations. Only the results using one, three, six, and twelve months of training are presented for the sake of brevity. Increasing numbers of
training months correspond with convergence of the worst-case scenario mean wind speeds and standard deviations to mean wind speeds
and standard deviations across all training periods of the same duration.

3.2 Regional long-term wind estimation performance

On average, using one month of observations produces regional median bias magnitudes within 0.35 m s using any of the
three MCP algorithms, except for the two Alaskan sites (Figure 8a-g). The Alaskan median bias magnitudes are substantially
higher (0.97 m s using MLR, 0.88 m s using ARS, and 0.93 m s using RT), but still significantly lower than the ERA5
median bias magnitude for these two sites (1.61 m s?) (Figure 3a). The most impressive reduction in bias magnitude occurs
for the Southern Plains, where the ERA5 produces a median bias magnitude of 1.74 m s (Figure 3a) that decreases to 0.25
m st (MLR), 0.26 m s (ARS), and 0.28 m s (RT) with the addition of just one month of observations (Figure 8e). Using
three and six months of observations, all median regional bias magnitudes are within 0.26 m s and 0.17 m s, respectively,
except for Alaska where the median bias magnitudes range from 0.64 m s (ARS, RT) to 0.78 m s (MLR) using three
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months and 0.36 m s (RT) to 0.50 m s* (MLR) using six months of observations. Using twelve months of observations, all
regional bias magnitudes are within 0.15 m s, including Alaska (Figure 8a-g).

The overall trend of RT showing the worst performance on average for MAE (Figure 4b) holds for each regional
designation as well (Figure 8h-u). On average, ARS with one month of observations improves on the median ERA5 MAEs
in all seven regions, while MLR with one month of observations improves on the median ERA5 MAEs in all regions except
Alaska. Only in the Southern Plains does RT with one month of observations improve on the median ERA5 MAE.

On average, using RT with one month of observations degrades the ERA5 median correlations in all regions. Considering
all sites, MLR tends to improve on the ERA5 correlations using one month of observations, while ARS performs similarly to
ERA5 (Figure 4c). However, when exploring correlation on a regional scale, MLR and ARS tend to improve on ERAS5
correlations using one month of observations in the Pacific NW, Northeast, and Southeast, while disimproving ERA5

correlations in Alaska, the West, Midwest, and Southern Plains.
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Figure 8. Long-term bias magnitude (left), MAE (centre), and correlation (right) according to region for varying training period lengths.
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3.3 Seasonal relationships between observations and long-term wind estimation performance

When considering using less than one year of wind speed measurements to correct long-term wind speed estimates, it is
important to select the most optimal time of year to gather such measurements (and to understand what times of year to
avoid). For each of the 66 sites, Figure 9 and Figure 10 share the best and worst single months, on average, for optimizing
error metrics when applying MCP to ERAS. The best months for optimizing bias using all three MCP algorithms are quite
variable across non-summer (June, July, August) months, while spring (March, April, May) and fall (September, October,
November) tend to produce the best MAE and correlation results, as shown by the larger circles (Figure 9). Specifically,
using MLR, ARS, and RT, respectively, spring (fall) months produce the lowest MAEs at 24 (22), 26 (27), and 8 (45) of the
66 sites and the highest correlations at 26 (22), 29 (20), and 15 (33) of the 66 sites. Summer months, particularly July and
August, tend to produce the worst biases, MAES, and correlations (Figure 10) and should be avoided if opting to create

MCP-based wind speed estimates using a single season of observations.
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Figure 9. Best average single months for optimizing (a), (b), (c) bias, (d), (e), (f) MAE, and (g), (h), (i) correlation when creating MCP-
based long-term wind speed estimates using (a), (d), (g) MLR, (b), (e), (h), ARS, and (c), (), (i) RT according to US region. Larger circles
indicate the best month for more sites in a given region.
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Figure 10. Worst average single months for optimizing (a), (b), (c) bias, (d), (e), (f) MAE, and (g), (h), (i) correlation when creating MCP-
based long-term wind speed estimates using (a), (d), (g) MLR, (b), (e), (h), ARS, and (c), (f), (i) RT according to US region. Larger circles
indicate a bad month for more sites.

3.4 Long-term wind estimation performance according to length of observations

Local wind speed trends evolve over decades due to climate evolution and land cover alterations. As this analysis involves a
wide range of definitions of long-term period based on observational availability (3.5 — 23 years) (Figure 2b), it is valuable
to assess the months-long MCP-based wind speed errors according to the length of the long-term period. Both on average
and in the worst-case scenarios using six months of training, bias magnitudes and MAEs tend to increase with increasing
length of long-term period (Figure 1la-d) as any six-month period becomes decreasingly representative of the long-term
period. On average, median bias magnitudes range from 0.10 m s to 0.11 m s* across the 8 sites with long-term periods of
3.5 -5 years, 0.13 m s across the 24 sites with long-term periods of 5 — 10 years, 0.10 m s to 0.13 m s across the 14 sites
with long-term periods of 10-15 years, 0.12 m s to 0.15 m s across the 12 sites with long-term periods of 15-20 years, and
0.20 m s to 0.25 m s across the 8 sites with long-term periods exceeding 20 years. The performance in bias magnitude
varies more significantly for the worst-case scenarios, with medians of 0.28 m s for sites with long-term periods of 3.5 — 5
years and 0.69 m s to 0.82 m s* for sites with long-term periods exceeding 20 years (Figure 11b).

MAEs from MCP wind speed estimated using six months of observations similarly increase with increasing length of
long-term period. Median MAESs range on average from 1.16 m s to 1.34 m s for long-term periods of 3.5 — 5 years up to
1.53 m s to 1.73 m s for long-term periods exceeding 20 years (Figure 11c). For the worst-case scenarios, median MAEs
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range from 1.23 m s to 1.42 m s for long-term periods of 3.5 — 5 years up to 1.78 m s to 1.95 m s for long-term periods
exceeding 20 years (Figure 11d). In contrast to the trends for bias magnitude and MAE, the average and worst-case
correlations exhibit no such trend of degradation of performance with increasing long-term period length (Figure 11e,f).
Rather, long-term periods of 3.5 — 5 years and exceeding 20 years yield the highest correlations, while long-term periods of
15 — 20 years produce the lowest correlations. Trends in MCP-based correlation are more influenced by region (Figure 80-u)

than the length of long-term period being represented.
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Figure 11. (a), (c), (e) Average and (b), (d), (f) worst-case scenario (a), (b) bias magnitude, (c), (d) MAE, and (e), (f) correlation based on
six months of training according to length of long-term period.

4 Discussion

On average, utilising months-long observations to correct reanalysis-based long-term wind speed estimates provides
significant improvement in accuracy of predicted winds (Figure 4). However, substantial risks to accuracy occur when the
months-long observational period is misrepresentative of longer-term wind speed trends (Figure 6). To evaluate the impacts
of long-term correction using months-long observations on distributed wind energy production, we convert the long-term
observed and simulated wind speeds to energy estimates using the National Renewable Energy Laboratory’s 100-kW

distributed wind reference power curve (NREL, 2019). Since variable lengths of long-term periods are utilised in this study,
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we opt to consider energy production in terms of the capacity factor, i.e., the energy estimate divided by the product of the
total number of hours in the long-term period and the turbine rated capacity (100 kW in this example). The observed wind
speeds in this analysis produce gross (i.e., no loss considered) capacity factors ranging 3% (inland Louisiana) to 66% (Texas
panhandle), with an average (median) of 34% (36%).

Across the 66 observational sites, simply using ERA5 to produce long-term energy estimates results in capacity factor
errors (|capacity factor based on simulations — capacity factor based on observed wind speeds|) up to 43 percentage points,
with a median of 7 percentage points. On average, just one month of observations reduces the capacity factor error range to
within 14 percentage points and the median capacity factor error to 3 percentage points (Figure 12a). The largest ERA5-
based outlier (43 percentage points) is for one of the Bonneville Power Administration meteorological towers in Oregon, and
MCP correction using one month of onsite observations reduces the capacity factor error at this site to 4-8 percentage points
on average, depending on the algorithm. Using three, six, and twelve months of training further reduces the capacity factor
errors to within 11 (median < 3), 7 (median < 2), and 5 (median < 2) percentage points, respectively. As for the wind speed
bias magnitudes (Figure 4a), RT is the best algorithm on average for reducing capacity factor error when using the 100-kW
reference power curve.

Like the wind speed evaluation, the potential for reduction of wind energy estimate error using months-long onsite
observations comes with risk. With a one-month training period in the worst-case scenario, the ERA5 capacity factor error
range (within 43 percentage points) reduces to within 35 percentage points, but the median capacity factor errors increase
from 7 to 12-13 percentage points (Figure 12b). Using three, six, and twelve months of training reduces the worst-case

capacity factor errors to within 23 (median <9), 17 (median < 6), and 9 (median < 3) percentage points, respectively.
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Figure 12. (a) Average and (b) worst-case scenario capacity factor error (JERA5/MCP capacity factor — capacity factor based on observed
wind speeds|) according to number of training months.

It is important to consider the performance of wind estimation methodologies from a variety of statistical standpoints,
since behind-the-meter customers may care most about whether their long-term production meets their initial expectations
(bias) and front-of-the-meter customers may be also concerned with distribution network integration with other energy
technologies (bias, correlation). While the three MCP algorithms assessed in this study perform similarly in terms of bias
magnitude (Figure 4a), for the shortest training period lengths (one to three months) RT performs significantly worse on
average for MAE and correlation than MLR and ARS (Figure 4b,c).

Given ERAS’s popularity in the wind energy community, along with its known challenges for wind speed bias and
relative success in terms of wind speed correlation, this study provides a useful framework for evaluating the performance of

MCP-based corrections to long-term wind speed estimates using months-long observations. However, the exercise would
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benefit in the future from expansion to include additional long-term models that provide wind resource information at
different horizontal and vertical spatial resolutions, such as the new WIND Toolkit Long-Term Ensemble Dataset (Draxl et
al., 2024). Additionally, the lessons learned in this work are being explored to quantify the geographic extent of their
potential application, with aims to support broader wind speed bias correction in distributed wind tools and to reduce the
amount of onsite measurement sites needed to correct sites with similar wind profile characteristics.

Based on this analysis, we identify the following key recommendations for wind energy developers creating long-term
wind resource estimates under the constraint of less than one year of onsite measurements which may occur for any number
of reasons, including instrument outages or timing of funding opportunities:

e While even one month of onsite wind speed measurements improves long-term wind speed estimates on average,
incorporating at least four months of onsite measurements is a better option to mitigate the errors that could occur if
some of the wind speeds in the measurement period are misrepresentative of the longer-term trends.

e Summer months, particularly July and August, should be avoided if opting to create MCP-based wind speed
estimates using a single season of measurements in the U.S., as these months tend to be the least representative of
long-term wind speed means and standard deviations.

e Since potential wind customers may care about long-term wind resource accuracy from multiple viewpoints, it is
important to note that of the three MCP algorithms explored, RT produces the lowest bias magnitudes and ARS the
lowest MAEs and correlations. However, MLR is the least risky algorithm given the possibility of measurement
during unfavourable wind conditions for MCP.

The results of this work highlight the benefits of anemometer or lidar loan programs to assist future distributed wind energy
customers with more accurate long-term wind resource estimates while maximizing the number of customers that can be
served by reducing the measurement time needed.

Code and data availability

Many of the wind speed measurement datasets that support this study are publicly available. Measurements from U.S. DOE-
sponsored laboratories, studies, and programs can be found at ANL (2022), ARM (2021), B2SHARE (2020), BNL (2020),
LBNL (2020), NREL (2022). Measurements in the Pacific Northwest from the Bonneville Power Administration can be
found at BPA (2022). Coastal measurements from the National Data Buoy Center are sourced from NDBC (2024).
Measurements from the University of Vermont’s Forest Ecosystem Monitoring Cooperative were formerly available at
FEMC (2020). The remaining measurements are proprietary, subject to non-disclosure agreements, and have restricted
access at DOE (2024).

The ERADS reanalysis data is obtained from ECMWF (2024). The 100-kW reference distributed wind power curve utilised
in this work is provided at NREL (2019). Data processing scripts are written in Matlab and are available from the author

upon request.
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